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1. ABSTRACT 

In our paper we report about the analysis of the 
Riemann Zeta function, based on the numeric 
values calculated at 10 million points of the 
|𝑅𝑒(𝑠)| < 1 region of the complex plane, and the 
conclusions arising from the analysis. We also 
consider the studies related to the 𝐸(𝑠) function, 

introduced by us, to be a key result. We used 
the MathWorks software for the analyses. 

2. RIEMANN ZETA FUNCTION 

The Riemann Zeta function 𝜁(𝑠) is a function of 

complex variable s that analytically continues 
the sum of the infinit series 

𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

  , 𝑠 = 𝑎 + 𝑏𝑖 (1) 

which converges when a>1. It is easy to see that 
the series 

∑
(−1)𝑛−1

𝑛𝑠

∞

𝑛=1

 

is convergent for a>0, and that it is equal to 

(1 −
1

2𝑠)𝜁(𝑠) for a>0. Riemann showed that 𝜁(𝑠) 

has an analytic extension to a meromorphic 

function on ℂ having a single simple pole at s=1. 
Moreover, he proved the functional equation 

𝜁(𝑠) ≔ 

1

2
𝑠(𝑠 − 1)𝜋−

𝑠
2Γ (

𝑠

2
) 𝜁(𝑠) = 

𝜁(1 − 𝑠) 

(2) 

where Γ(𝑠) is the Gamma function. 𝜁(𝑠) = 0 at 

s=-2,-4,-6,... and 𝜁(𝑠) ≠ 0 if a>1. The assertion  

that 𝜁(𝑠) ≠ 0 on the vertical line is equivalent to  
 
 

the prime number theorem, asserting that 
𝜋(𝑥)

𝑙𝑖(𝑥)
→ 0 as 𝑥 → ∞, where 𝜋(𝑥) is equal to num-

ber of prime numbers up to x, and 𝑙𝑖(𝑥) = ∫
𝑑𝑢

𝑙𝑜𝑔𝑢

𝑥

2
 . 

All the other (so called non trivial) zeros are  
located on the critical strip 0<a<1. Riemann  
asserted that the number of that zeros whose  
imaginary parts are between 0 and T>0 is approx-
imately equal to 

𝑇

2𝜋
𝑙𝑜𝑔

𝑇

2𝜋
−

𝑇

2𝜋
 

with the error term 𝑂(
1

𝑇
) . 

Riemann stated that all roots of the zeta-
function lie on the critical line a=½ , which is the 
famous Riemann Hypothesis. So far, there is 
no proof of the Riemann hypothesis that states 
that the real part of every non-trivial zero of the 
ζ-function is ½, thus the non-trivial zeros lie on 
the so called critical line consisting of complex 
numbers 1/2 + it.  

Zeta function can be written in trigonometric 
form as follows: 

𝜁(𝑠) = 

∑
1

𝑛𝑎

∞

𝑛=1

(cos(−𝑏𝑙𝑜𝑔𝑒(𝑛)) + 

sin(−𝑏𝑙𝑜𝑔𝑒(𝑛)) 𝑖) 

(3) 

In this paper, we also rely on the Riemann-
Siegel function. 

Riemann devised a formula for the calculation of 
the zeros on the critical line, but the formula was 
not published, and it was only somewhat later,  
in 1930, that Carl Siegel rediscovered it. Thus, 
the function is now called the Riemann-Siegel 
formula: 
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𝜁(𝑠) ≈ ∑
1

𝑛𝑎

⌊√ 𝑏
2𝜋

⌋

𝑛=1

cos (𝜃(𝑏) − 

𝑏𝑙𝑜𝑔𝑒(𝑛)) 

(4) 

where:  

𝜃(𝑏) = −
𝑏

2
𝑙𝑜𝑔𝑒 (

2𝜋

𝑏
) − 

𝑏

2
−  

𝜋

8
+ 

1

48𝑏
+

7

5760𝑏3
+ 

31

80640𝑏5
+ ⋯ 

(5) 

Between the Riemann-Siegel formula and the 
Zeta function it is true that the absolute values of 
all of the complex numbers with real part ½ are 
equal. 

 

Figure 1. 
The graphics of 𝜁𝑁 

 

Figure 2. 

3. THE EXAMINATION  
    OF THE ZETA FUNCTION 

Let’s denote the Nth partial sum with 𝜁𝑁(𝑠) and 

plot them in the complex plane. Analysing the 
results, we see that increasing N results a more 
and more regular spiral diagram, as shown in 
Figure 1. The points of 𝜁𝑁(𝑠) do not change their 

rotational direction until the difference 
𝑏𝑙𝑜𝑔𝑒(𝑛) − 𝑏𝑙𝑜𝑔𝑒(𝑛 − 1) exceeds one of the mul-

tiples of 𝜋. Given the fact that this difference de-
creases with increasing N, the points of the spi-
ral are concentrating. We have found that by in-

creasing the 𝑏, the value of 𝑏𝑙𝑜𝑔𝑒(𝑁) −

𝑏𝑙𝑜𝑔𝑒(𝑁 − 1) at 𝑁 = ⌊
𝑏

𝑘𝜋
⌋ becomes equal to 𝑘𝜋.  

Interesting result was obtained about the geo-
metric relationship between partial sum at 

𝑁 < √
𝑏

2𝜋
 and > √

𝑏

2𝜋
 ; about the behaviour of the 

points of the spiral diagrams at a variety of real 
parts between 0 and 1 (Figure 2). Note that val-

ue √
𝑏

2𝜋
 plays a role in the case of the Riemann-

Siegel function as well. 

 

Figure 3. 

3.1. The case of Re(s) = ½ 

In the case of 𝑠 =
1

2
+ 𝑖𝑡, it was found that partial 

sums at 𝑁 < √
𝑏

2𝜋
 and 𝑁 > √

𝑏

2𝜋
 are mirror images 

of each other, projections to an “imaginary” line 

at the points of partial sums 𝑁 = 𝑘 and 𝑁 =

⌊
𝑏

(2+𝑘)𝜋
⌋ are in a mirror image relationship with 

each other (Figure 3). Our calculations indicate 

that exists 𝑏 where 𝜁𝑁(
1

2
+ 𝑏𝑖)=0. (We will proof 

that 𝜁𝑁(𝑠)=0 cannot be true if ≠
1

2
 .) 
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3.2. The case of Re(s) ≠ ½ 

Our calculations show that for any arbitrary im-
aginary part value is true that in the case of 

𝑅𝑒(𝑠) =
1

2 
, the “last” spiral section between ⌊

𝑏

3𝜋
⌋ 

and ⌊
𝑏

𝜋
⌋ is very close to 1 (Figure 4). In the case 

of 𝑅𝑒(𝑠) =
1

2 
, the graph of the partial sums takes 

the shape shown in Figure 5, that is, the lengths 
of the straight sections of the two branches, and 
the angle between them is the same. Because 
the change in the real part of the Zeta function 
does not affect the change of the angle between 
the vectors of the individual Nth and N-1st partial 
sums, only the distance, it remains that the two 
branches “assimilate” to each other, but the 
length of the sections between the partial sums 
are not equal (see Figure 5).  

 

Figure 4. 

 

 

Figure 5. 

The “last” spiral length can be calculated using 
the following expression: 

∑
2

√2𝑛𝑎

⌊
𝑏

2𝜋
⌋+⌊√ 𝑏

2𝜋
⌋

𝑛=⌊
𝑏

2𝜋
⌋

 (6) 

that can be approximated by the expression: 

(
𝑏

2𝜋)
1
2

−𝑎

𝑛1−𝑎
 

(7) 
 

Figure 6. 
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Figure 7. 

From this observation we construct a new ap-
proximate function, which uses the Riemann-
Siegel function as well. 

 

Figure 8. 

4. NEW APPROXIMATE FUNCTION 

Based on the numerical experience that the 𝜁𝑁 
partial sums are disposed symmetrically starting 

from 𝑁 = √
𝑏

2𝜋
, we prepared the following approx-

imate function: 

𝐸(𝑠) = 

∑
1

𝑛𝑎

⌊√ 𝑏
2𝜋

⌋

𝑛=1

cos(𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) + 

1

𝑛𝑎
sin(𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) 𝑖 + 

(
𝑏

2𝜋)
1
2

−𝑎

𝑛1−𝑎
cos(𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) − 

(
𝑏

2𝜋)
1
2

−𝑎

𝑛1−𝑎
sin (𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛))𝑖 

(8) 

Based on the calculated values of several million 
points, it can be stated that: 
|𝜁(𝑠)| ≈ |𝐸(𝑠)| (See Figure 8 as an illustration)  

The difference of |𝜁(𝑠) − 𝐸(𝑠)| is shown in  
Figure 9. 

 

Figure 9. 

The function 𝐸(𝑠) can be written in the form of 

𝐹1(𝑠) + 𝐹2(𝑠)𝑖, where: 
 

𝐹1(𝑠) = 

∑
1

𝑛𝑎

⌊√ 𝑏
2𝜋

⌋

𝑛=1

cos(𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) + 

(
𝑏

2𝜋
)

1
2

−𝑎

𝑛1−𝑎
cos (𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) 

(9) 

 

𝐹2(𝑠) = 

∑
1

𝑛𝑎

⌊√ 𝑏
2𝜋

⌋

𝑛=1

sin(𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) − 

(
𝑏

2𝜋)
1
2

−𝑎

𝑛1−𝑎
sin (𝜃(𝑏) − 𝑏𝑙𝑜𝑔𝑒(𝑛)) 

(10) 

The graphs shown in the Figures 10 and 11 
serve as illustrations of the numerical analysis of 
𝐹1(𝑠) and 𝐹2(𝑠). In these we can see that zero 

points of 𝐹1(𝑠) and 𝐹2(𝑠) do not overlap, thus 

𝐸(𝑠) has no root in the case of any 𝑅𝑒(𝑠) ≠
1

2
.  

 



| INFORMATIKA | 

44 | Vol. XVIII. No. 1. |  

Because of the |𝜁𝑁(𝑠)| ≈ |𝐸𝑁(𝑠)| relationship this 

also means that 𝜁𝑁(𝑠) has no root, which seems 
to prove the Riemann hypothesis. 

 

Figure 10. 

 

Figure 11. 

The graph in Figure 10 also shows that where 

the 𝐹2(𝑠) disappears in the cases of 𝑅𝑒(𝑠) ≠
1

2 
 

there 𝐹1(𝑠) ≠ 0 (it has a maximum here), and 
that proves the Riemann hypothesis for the cas-
es calculated by us. 
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