
| INFORMATIKA |

34 | Vol. XVIII. No. 1. |

COMPARISON OF RECURSIVE AND ITERATIVE
METHODS USING PROGRAMMING THEOREMS

Tamás Gábor Félegyházi; college student; Dennis Gabor College; felegyhazi.tamas@gmail.com

Ákos Kovács; college student; Dennis Gabor College; akoskovacs993@gmail.com

Sándor Kaczur; assistant lecturer; Dennis Gabor College; kaczur@gdf.hu

Keywords: programming, effectiveness, algo-

rithms, recursion, programming theorems

1. ABSTRACT

In mathematics recursion is a well-known con-
cept and an applied procedure, several defini-
tions and formulae are laid down in a recursive
form, and it is the principal base of several theo-
rem’s verification. The fast paced advance of the
information technology opened countless new
opportunities for the appliance of using recur-
sion, complicated operations may be algorith-
mized in a very simple way with recursion. For
example, the exploration of a share on a file
server (all folders, and subfolders) can be im-
plemented with a very straightforward algorithm,
however, accomplishing the same with nested
iterations will result in a lengthy, perspicuous
and hard to expand source code [1-4].

Several known examples exist where the prob-
lem can be most effortlessly described, under-
stood and solved by reducing the problem to the
most trivial base-event. For example: Fibonacci
sequence, or the towers of Hanoi, where the
base event could be the replacement of all the
disks towering above our current disk, and plac-
ing all of them (in the same order) to the next
rod.

Separating recursive problems into two is practi-
cal: in the first set for the train of thought, there
are the idea, the algorithm and the method; in
the second set for data representation, there are
the data structure and the efficiently built pro-
cessing. The former group instead of the typical
iterative solutions deals with recursive design,
implementation, testing and inspection [5-6]; the
latter deals with recursive type definition, data
structures and their constructor and selection
operations [7-8].

2. ABOUT PROGRAMMING THEOREMS:
 ITERATIVE AND RECURSIVE VERSIONS

Let us look at how to work with certain basic
scenarios, looking through a certain heap of el-
ements and looking for a single attribute that
these elements may or may not have, or just
finding the pieces those elements possess, or
finding out if those elements possess a certain
attribute in two different heaps and relocating
them to a new heap could be implemented.

How could these basic scenarios be reduced to
a trivial base, and is it more efficient to solve
these problems via recursion, or is it inefficient,
slow and complicated in modern programming
languages?

To find out the answer to this question, we cre-
ated a small environment, where we can simu-
late these events, and observe the lifetime of the
algorithms. The data we have been using is the
Oracle HR scheme database [9]. Our heap of
elements consists of employees and depart-
ments, those heaps have certain attributes like
name, salary, id and so on.

If we are looking for a person in our ship manu-

facturing company that has the first name ’Bob’

– assuming our company has a finite number of
employees – we could just look at all their per-
sonal files and check the persons one by one. If
the currently active file is the one we are looking
for, we take the file, otherwise we get the next
file. An algorithm solving this problem could look
like this:

mailto:felegyhazi.tamas@gmail.com
mailto:akoskovacs993@gmail.com
mailto:kaczur@gdf.hu

| INFORMATIKA |

 | Vol. XVIII. No. 1. | 35

empList: list of employees

i: integer, default 0;

FindBob()

 while

 i<empList.length AND empList[i].name <> ’Bob’

 i:=i+1

 end while

 Out:

 if i<empList.length then i

 else -1

 end if

end of function

This routine solves the problem at once iterating
through all the elements. We could willingly
reduce the routine to a base case [10-11]:

FindBob(int n)

 Out:

 if n<empList.length then

 if EmpList[n].name=’Bob’ then n

 else FindBob(n+1)

 end if

 else -1

 end if

end of function

Let us call this base case solving routine for the
first element: FindBob(0).

Figure 1.
The Model layer of the application

3. PLANNING

Our plan was to create an environment where
we can compare the different approaches with a
great emphasis on reusability and reusable
classes. So we can later use the same environ-
ment for the comparison of different subroutines.
We decided to develop the environment in Java
8. For the same reason, we have also been us-
ing Model-View-Controller architectural design
pattern, so the different layers of the application
can be universally replaced by other implemen-
tations (Figure 1).

4. IMPLEMENTATION

To compare the efficiency of the two different
approaches, we implemented both and meas-
ured the run time of the algorithms in a precise
manner (in nanoseconds) in Java programming
language. Our test service requests a variable
argument list of methods to be tested and com-
pared, and assumes that all the data are acces-
sible. The test service creates a complete run-
down on the runtime of the tested methods and
stores all data on the hard drive; and while doing
so it tries not to interfere with the runtime of the
tested methods.

| INFORMATIKA |

36 | Vol. XVIII. No. 1. |

To accomplish this, we limited the interval while
the passing time itself was being measured.

Step 1: store the current time in nanoseconds in

a long variable: runTime.

Step 2: invoke the method (from the vararg list)

via reflection technology.

Step 3: subtract the current time in nanoseconds

from runTime variable.

The result of the test service is a list of runTime

variables for each tested method. The service
can invoke the methods multiple times, and
keep feeding the observed methods with the
necessary parameters. The service is running in
a background thread, so we can run multiple
standalone comparisons simultaneously [12].

We implemented six basic programming theo-
rems via scenarios like the one described be-
fore, in two different approaches: both iterative
and recursive. These six basic theorems were:
sequence count, decision, selection, (linear)
search, count and limit selection. And we also
implemented six complex theorems in a similar
method. These six complex theorems were:
copy, select, separation, intersection, union and
merge [4, 9, 10].

The model package contains classes required
for wrapping the results and the methods that
we are testing, some helper classes, and enu-

merations that are used in the constructors of
other classes.

The view package contains the necessary clas-
ses for the graphical user interface, the control-
ler package contains the main class of the appli-
cation that passes the data from the model to
the view; this package is responsible for the con-
trol of the flow of the application.

Throughout in the program, to ease the burden
of further developing the application, we used
type generics. To by-pass the problem of storing
the methods in a reusable and replaceable form,
we used reflection.

5. TESTING

The process of testing and evaluation of the
results were made simpler by the graphical user
interface. The tabs (Figure 2) show the different
tables of the database, and allow switching
between different methods that can be tested.
At the bottom part of the application, we can see
the average of the results of the tested methods’
runtimes. We added a nice-looking fancy
javafx.scene.chart.LineChart to demon-

strate the results of the measurement. We also
have options to randomize the parameters to be
fed to the tested methods.

Figure 2.
Showing test results in the application

| INFORMATIKA |

 | Vol. XVIII. No. 1. | 37

Figure 3.
Comparison of the test results

After testing each programming theorem we
summarized the final results and it turned out
that the recursive solution was faster in seven
occurrences out of the twelve, while the iterative
was faster only on five occasions. There was a
programming theorem which foregone another
one only by a little, for example during selection
or making decision.

There were also programming theorems outper-
forming an implementation compared to another
one.

6. RESULTS

On Figure 3 we can see the average of
1,000,000 runs per theorem. Green background
marks the implementation that runs faster. As
we can see, for the first 6 basic theorems the
iterative implementations ran faster (4 times out
of 6), while for the last 6 complex theorems the

recursive implementations ran faster (5 times
out of 6). Summarized for the 12 theorems, the
recursive implementations were faster 7 times
out of 12.

It is worth noting that among the elementary
programming items, the iterative programming
was faster by 4-2 ratio; while amongst complex
items, recursive became faster by 5-1 ratio. Ac-
cording to the data, the more complex an algo-
rithm, the faster the recursive implementation
executes compared to the iterative. This also
sums up the assumption that a “critical mass”
should be achieved to make it “worthwhile” using
the recursive method.

7. FORK/JOIN

In cases where recursion seemed to be less ef-
ficient than iteration, we tried to enhance per-
formance through parallelization. We used Ja-
va’s built in fork/join framework [13]. The class
we used is
java.util.concurrent.RecursiveTask<V>.

Our RecursiveTask implementation is rather

simple, it slices one of the lists into two different
sublists if the list’s size is greater than a certain
threshold, and forks; otherwise it creates a(n in-
ter)section of the two lists in a recursive method.

We compared runtime list of this
RecursiveTask implementation’s runTime list

with the iterative version of the section creation.

One way to implement the iterative version in
Java with the use of ObservableLists,

Collections and such to help decrease the

complexity of the code itself looks like this:

public ObservableList sectionIterative(

 ObservableList list1, ObservableList list2) {

 Set temp = new HashSet<>();

 for (int i = 0; i < list1.size(); i++) {

 int j = 0;

 while (j<list2.size() && list1.get(i) != list2.get(j))

 j++;

 if (j<list2.size())

 temp.add(list1.get(i));

 }

 return FXCollections.observableArrayList(temp);

}

| INFORMATIKA |

38 | Vol. XVIII. No. 1. |

Implementing another solution to the same prob-
lem in a recursive method resulted in the follow-
ing code:

private ObservableList<Employee> sectionRecursive(

 ObservableList<Employee> list1, ObservableList<Employee> list2,

 final int n, Set<Employee> temp) {

 if (n>=list1.size())

return FXCollections.observableArrayList(temp);

 if (list2.contains(list1.get(n)))

 temp.add(list1.get(n));

 return sectionRecursive(list1,list2,n+1,temp);

}

After this, we created the specialized

ForkJoin class for the section creation. The

compute() method checks if the first list is big-

ger than a THRESHOLD; if it is bigger it forks on

the left half of the list, computes the right half

of it (containing exactly the threshold number of

elements) through the sectionRecursive()

method, adds the results to a temp set and ex-

tends it with the result of join() of the second

sublist’s RecursiveTask object.

@Override

protected ObservableList<Employee> compute() {

 if (bigger.size()>THRESHOLD) {

 MetszetFJ right = new MetszetFJ(

 FXCollections.observableArrayList(

 bigger.subList(bigger.size()/2, bigger.size())),

 FXCollections.observableArrayList(smaller), false);

 right.fork();

 MetszetFJ left = new MetszetFJ(

 FXCollections.observableArrayList(

 bigger.subList(0, bigger.size()/2)),

 FXCollections.observableArrayList(smaller), false);

 Set out = new HashSet(left.compute());

 out.addAll(right.join());

 return FXCollections.observableArrayList(out);

 }

 else

 return FXCollections.observableArrayList(

 intersect(bigger,smaller));

}

However, this parallel approach was without
success, it was running even slower than the
previous recursive version. Our assumption is
that either the problem was not complex
enough, or the database we used was too small,
so the overhead caused by the memory con-
suming objects created for the multiple parallel
threads was not worth it.

8. SUMMARY

While our work did not result in a straightforward
answer to the original question; it, however, does
create the assumption that for only a slight, or no

sacrifice at the performance, we can solve the
same problem with a different, tighter code be-
cause recursive algorithms are more often less
prolonged than their non-recursive counterparts.

This was sort of a surprise for some of us, we
initially assumed that recursion would always be
slower than iteration as it would create a high
number of unnecessary objects or references to
objects on the heap, but it certainly does seem
like in some cases, recursion may be a viable
option to tighten and tidy up the code a bit, and
in certain special cases, may even increase per-
formance a bit.

| INFORMATIKA |

 | Vol. XVIII. No. 1. | 39

9. REFERENCES

[1] Szlávi P., Zsakó L.: Módszeres programo-
zás: Rekurzió, Mikrológia 4., ELTE TTK In-
formatikai Tanszékcsoport, 4. bővített kia-
dás, 1997

[2] Angster E.: Programozás tankönyv II.,
4KÖR Bt., 5., javított kiadás, 1999, ISBN
963 450 957 6 II.K.

[3] Angster E.: Objektumorientált tervezés és
programozás, Java, 2. kötet, 4KÖR Bt., 2., át-
dolgozott kiadás, 2004, ISBN 963 216 513 6

[4] Kaczur S.: Programozási alapok, 1. kiadás,
2009, ISBN 978-963-06-8122-3

[5] Szlávi P., Zsakó L.: Módszeres programo-
zás: Programozási tételek, Mikrológia 19.,
ELTE TTK Informatikai Tanszékcsoport,
4. javított kiadás, 1999

[6] Recursive factorial | Recursive Algorithms |
Khan Academy,
https://www.khanacademy.org/computing/
computer-science/algorithms/recursive-
algorithms/a/recursive-factorial, 2015.10.30.

[7] Iványi A.: Informatikai algoritmusok I., ELTE
Eötvös Kiadó, Budapest, 2004, ISBN
963 463 664 0

[8] Pap Gné., Szlávi P., Zsakó L.: Módszeres
programozás: Rekurzív típusok, Mikrológia
27., ELTE TTK Informatikai Tanszékcsoport,
3. javított kiadás, 1998

[9] Oracle HR schema,
https://docs.oracle.com/cd/B19306_01/
server.102/b14198/graphics/ comsc002.gif,
2015.10.02.

[10] Pintér L.: Programozási tételek rekurzív
megvalósítása, Mikrológia 10., ELTE TTK
Informatikai Tanszékcsoport, 4. kiadás, 1995

[11] Kaczur S.: A rekurzió tanításához hasz-
nálható mintaprogramok Java nyelven,
A Dunaújvárosi Főiskola Közleményei,
Dunaújváros, XXXI., 2009, ISSN 1586-8567,
p. 1-6 (magyar nyelvű szakcikk)

[12] Defining Multithreading Terms,
http://docs.oracle.com/cd/E19455-01/806-
5257/6je9h032b/index.html, 2015.10.18.

[13] J. Ponge: Fork and Join: Java Can Excel at
Painless Parallel Programming Too!,
http://www.oracle.com/technetwork/articles/
java/fork-join-422606.html, 2015.10.18.

https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/recursive-factorial
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/recursive-factorial
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/recursive-factorial
https://docs.oracle.com/cd/B19306_01/server.102/b14198/graphics/%20comsc002.gif
https://docs.oracle.com/cd/B19306_01/server.102/b14198/graphics/%20comsc002.gif
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

