
| INFORMATIKA |

 | Vol. XVIII. No. 1. | 3

MAKING ONLINE RECOMMENDATIONS
MADE EASY BY APACHE SPARK

Aslan Bakirov; İstanbul Şehir University, Data Science Lab

Kevser Nur Çoğalmış; İstanbul Şehir University, Data Science Lab

Ahmet Bulut; İstanbul Şehir University, Data Science Lab

Keywords: Apache Spark; Collaborative Filter-

ing; Scalable Data Analytics.

1. ABSTRACT

With the advent of social networks, forums, and
blogs, the amount of data on the Web has in-
creased rapidly, resulting in an information
explosion. Using the Internet, users make pur-
chases, listen to music, or watch a movie; then
later on, they make comments about the pur-
chases they have recently made, indicate their
musical preference, and write their opinions
about the movies they have recently watched.

Raw user data as is does not provide much in-
formation unless the information is explicitly pro-
cessed. Data mining refers to the process of
extracting information from raw data. Data min-
ing is used for a variety of knowledge discovery
tasks such as classification, clustering, and re-
gression. Since actual task implementations
analyze the entire set of data in order to find a

common pattern, the run time of these algo-
rithms depends on the size of the dataset.

Handling large amounts of data requires the use
of the MapReduce (M/R) programming model on
special purpose compute clouds. Hadoop was
one of the first platforms introduced that pro-
vides an implementation of M/R on a compute
cluster. A more recent implementation of M/R
called Apache Spark has been shown to provide
ten-fold performance benefits compared to
Hadoop on certain machine learning tasks.

In this study, we present our results in designing
a scalable data analytics platform on top of
Apache Spark. More specifically, we built an
online collaborative filtering application for testing
the scalability and usability of Spark’s machine
learning library on a cluster of 8 workers. Each
worker contributes 4 cores, 8 GB RAM, and 100
GB of disk space to the compute pool. Our con-
clusion is that Spark is sufficiently advanced for
deployment in production environment.

Figure 1.
System Workflow for Making Online Recommendations.

| INFORMATIKA |

4 | Vol. XVIII. No. 1. |

Figure 2.
System Architecture for Making Online Recommendations.

2. SYSTEM DESIGN AND IMPLEMENTATION

Here, we provide the details of our reference
system that uses the recommendations comput-
ed using Spark's MLBase library [1]. The refer-
ence system denotes an entire Web 2.0 service,
which supplies vital data from an in-memory
cache layer. The cache layer is bootstrapped
with recommendations computed a-priori by the
backend batch-processing engine powered by
Spark [2].

2.1. System Workflow

The complete system workflow is shown in
Figure 1. We start with raw data. Spark’s MLI
interface accepts input data in a particular
format for building any ML model. Hence, we
have to first pre-process the raw data in order
to convert it into the desired format and then
persist it onto HDFS.

We build an alternative least squares based
machine learning model and fill in the missing
entries with data (the score matrix, which con-
tains user-to-product score information) using
this learnt model.

When the Web server is up, the Hazelcast clus-
ter loads all data into the main memory.

The Web server contacts the cluster to look up
product recommendations on the fly.

2.2. System Architecture

Here, we have a tiered architecture. At the base
layer, the available data, which is used for train-

ing and testing, is stored in a Hadoop Distributed
File System (HDFS).

We employed Spark’s MLBase to build a score
prediction model on top of this data. The learnt
model is stored in a distributed cache, which is
buit on Hazelcast [3]. Hazelcast is an open
source in-memory data grid written in Java.
Using Hazelcast, data can be distributed evenly
across a clustered cache.

To avoid data loss due to node failures, multiple
replicas of each data record are distributed
among the cluster nodes. There are different
use cases of Hazelcast. In practice, it is most
widely used

 as a distributed cache in front of a persis-
tent storage system,

 for clustering Web sessions,

 for in-memory big data processing and
analytics.

Our use of Hazelcast corresponds to the first
use case. The topmost layer in the architecture
is our Web layer, which recommends movies to
users in the system. The full system architecture
is shown in Figure 2 above. The cluster consists
of 1 master and 8 workers. Each worker contrib-
utes 4 cores, 8 GB RAM, and 100 GB of disk
space to the compute pool. The number of Web
clients may be arbitrarily large.

Spark’s master node also serves as the HDFS
Name Node and is not only part of the Hazelcast
distributed cache (the cluster ring) but also runs
a Web server. Multiple Web clients query this

| INFORMATIKA |

 | Vol. XVIII. No. 1. | 5

Web server. The master node hands out tasks
to workers in the cluster, which carry out the ac-
tual task executions.

Each Spark worker is responsible for storing
data, i.e., acting as an HDFS Data Node, and
from executing tasks assigned by the master.
Furthermore, each worker belongs to the same
Hazelcast cluster ring as the master.

2.3. MLBase

MLBase is a scalable machine learning (ML)
framework that runs on Spark’s core processing
engine. MLbase consists of three components:
(1) Machine Learning Library (MLlib), (2) Ma-
chine Learning Interface (MLI), and (3) Machine
Learning Optimizer (ML Optimizer).

 ML Optimizer automates the task of ML
pipeline construction. It optimizes algo-
rithm parameters and data sampling at
runtime. The optimizer estimates execu-
tion time and algorithm performance using
statistical models built on data collected
from previous job executions.

 MLI is an API for feature extraction and
algorithm development that provides high-
level ML programming abstractions.

 MLlib is a distributed machine learning
library that runs on Spark.

Developing scalable machine learning algo-
rithms using MLI is very simple. For instance,
the following code block in Scala programming
language builds a model for recommending
movies to users using user to movie pairs and
user ratings datasets.

var X = load("user_movie_pairs", 1 to 2)

var y = load("user_ratings", 1)

var (fn-model, summary) = doCollabFilter(X, y)

For a given user Alice, the scores Alice would
give to movies that she has not seen yet can be
estimated using the model learnt, i.e., fn-model
above.

2.4. Building a Model

In order to learn a recommendation model, we
used Amazon’s IMDB movie reviews dataset
[4,5]. There are 7,911,684 reviews, which were
extracted from 889,176 reviews for 253,059
products. All reviews have information about
product ID, user ID, time, score, summary, and
text. An example review is given below:

product/productId: B00006HAXW

review/userId: A1RSDE90N6RSZF

review/profileName: Joseph M. Kotow

review/helpfulness: 9/9

review/score: 5.0

review/time: 1042502400

review/summary: “Pittsburgh – Home of the OLDIES”

review/text: “I have all of the doo wop DVD's and this
one is as good or better than the 1st ones. Remem-
ber once these performers are gone, we'll never get
to see them again. Rhino did an excellent job and if
you like or love doo wop and Rock n Roll you'll LOVE
this DVD !!”

In our case, we only used the following data at-
tributes: user’s identification (user id), product’s
identification (product id) and the score given by
a user with a specific user_id to a product with a
specific product_id. Table 1 shows sample data
after basic pre-processing has been performed.

User ID Product ID Score

26256 208865 3.0

484047 208865 3.0

118779 208865 5.0

Table 1.
Training Data. Users score movies they watched

on a scale of 0-5.

We used the alternative least squares algorithm
(ALS) available in MLI in order to train a recom-
mender from 500K user id, product id, and score
entries [6]. The algorithm predicts the unfilled
cells in the users x products score matrix shown
in Table 2a using partial score data. An unfilled
cell for a user_id to product_id pair means that
user has not yet scored that product. Once the
score matrix is filled up with score predictions as
shown in Table 2b, the whole matrix is written
onto the HDFS. In our implementation, this
whole operation took 6 minutes. When the Web
server is booted up, the Hazelcast cluster loads
the score matrix stored in HDFS right into the
cluster’s distributed main memory. When a user
logs in, top recommended products based on
the scores computed are shown to the user in a
matter of seconds.

| INFORMATIKA |

6 | Vol. XVIII. No. 1. |

Figure 3.
MLBase Architecture.

 Product ID

User
ID

2 1

 5

 3

(a) Before predictions made.

 Product ID

User
ID

2 x1 1

x2 x3 5

x4 3 x6

(b) After predictions made using ALS.

Table 2.
Using the users’ product scorings data available,

the ALS algorithm is applied in order to fill
in the missing entries in the score matrix.

The time it takes to build a model from scratch is
typically a couple of minutes, but fortunately, the
framework allows us to save the learnt model on
to the HDFS. This enables us to use the model
later on and also make it available for use by
other applications. This capability is depicted
visually in Figure 3.

3. CONCLUSIONS

We built an online system that uses recommen-
dations made by a backend batch system
developed on Apache Spark. Using the ALS

algorithm available in Spark’s MLI API, it is pos-
sible to craft a distributed and online recommen-
dation system. Filling in a sparse prediction
matrix that includes 500K entries, took 6 minutes
in our cluster of 8 workers, each of which had
4 cores and 8 GB of RAM. Also, we noted that
MLBase allows us to save the learnt model,
which can be used by downstream systems and
applications.

4. REFERENCES

[1] T. Kraska, A. Talwalkar, J. C. Duchi, R. Grif-
fith, M. J. Franklin, and M. I. Jordan.
MLBase: A distributed machine-learning sys-
tem. In CIDR, 2013.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker, and I. Stoica. Spark: cluster com-
puting with working sets. In Proceedings of
the 2nd USENIX conference on Hot topics in
cloud computing, pages 10–10, 2010.

[3] Hazelcast. Hazelcast the leading in-memory
data grid. http://hazelcast.com/

[4] A. Bakırov, K. N. Çoğalmış, and A. Bulut.
Scalable sentiment analytics. Turkish Jour-
nal of Electrical Engineering & Computer
Science, 2014.

[5] J. Leskovec and A. Krevl. SNAP Datasets:
Stanford Large Network Dataset Collection
at http://snap.stanford.edu/data. June, 2014.

[6] Y. Koren, R. Bell, and C. Volinsky. Matrix
Factorization Techniques for Recommender
Systems. In Computer, v42 (8), pp 30—37,
August 2009.

http://hazelcast.com/
http://snap.stanford.edu/data

