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1. ABSTRACT 

With the advent of social networks, forums, and 
blogs, the amount of data on the Web has in-
creased rapidly, resulting in an information  
explosion. Using the Internet, users make pur-
chases, listen to music, or watch a movie; then 
later on, they make comments about the pur-
chases they have recently made, indicate their 
musical preference, and write their opinions 
about the movies they have recently watched.  

Raw user data as is does not provide much in-
formation unless the information is explicitly pro-
cessed. Data mining refers to the process of  
extracting information from raw data. Data min-
ing is used for a variety of knowledge discovery 
tasks such as classification, clustering, and re-
gression. Since actual task implementations  
analyze the entire set of data in order to find a 

common pattern, the run time of these algo-
rithms depends on the size of the dataset.  

Handling large amounts of data requires the use 
of the MapReduce (M/R) programming model on 
special purpose compute clouds. Hadoop was 
one of the first platforms introduced that pro-
vides an implementation of M/R on a compute 
cluster. A more recent implementation of M/R 
called Apache Spark has been shown to provide 
ten-fold performance benefits compared to  
Hadoop on certain machine learning tasks.  

In this study, we present our results in designing 
a scalable data analytics platform on top of 
Apache Spark. More specifically, we built an 
online collaborative filtering application for testing 
the scalability and usability of Spark’s machine 
learning library on a cluster of 8 workers. Each 
worker contributes 4 cores, 8 GB RAM, and 100 
GB of disk space to the compute pool. Our con-
clusion is that Spark is sufficiently advanced for 
deployment in production environment.  

 

Figure 1. 
System Workflow for Making Online Recommendations. 
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Figure 2. 
System Architecture for Making Online Recommendations. 

2. SYSTEM DESIGN AND IMPLEMENTATION 

Here, we provide the details of our reference 
system that uses the recommendations comput-
ed using Spark's MLBase library [1]. The refer-
ence system denotes an entire Web 2.0 service, 
which supplies vital data from an in-memory 
cache layer. The cache layer is bootstrapped 
with recommendations computed a-priori by the 
backend batch-processing engine powered by 
Spark [2]. 

2.1. System Workflow 

The complete system workflow is shown in  
Figure 1. We start with raw data. Spark’s MLI 
interface accepts input data in a particular  
format for building any ML model. Hence, we 
have to first pre-process the raw data in order 
to convert it into the desired format and then  
persist it onto HDFS.  

We build an alternative least squares based  
machine learning model and fill in the missing 
entries with data (the score matrix, which con-
tains user-to-product score information) using 
this learnt model.  

When the Web server is up, the Hazelcast clus-
ter loads all data into the main memory.  

The Web server contacts the cluster to look up 
product recommendations on the fly.  

2.2. System Architecture 

Here, we have a tiered architecture. At the base 
layer, the available data, which is used for train-

ing and testing, is stored in a Hadoop Distributed 
File System (HDFS).  

We employed Spark’s MLBase to build a score 
prediction model on top of this data. The learnt 
model is stored in a distributed cache, which is 
buit on Hazelcast [3]. Hazelcast is an open 
source in-memory data grid written in Java.  
Using Hazelcast, data can be distributed evenly 
across a clustered cache.  

To avoid data loss due to node failures, multiple 
replicas of each data record are distributed 
among the cluster nodes. There are different 
use cases of Hazelcast. In practice, it is most 
widely used 

 as a distributed cache in front of a persis-
tent storage system, 

 for clustering Web sessions, 

 for in-memory big data processing and 
analytics. 

Our use of Hazelcast corresponds to the first 
use case. The topmost layer in the architecture 
is our Web layer, which recommends movies to 
users in the system. The full system architecture 
is shown in Figure 2 above. The cluster consists  
of 1 master and 8 workers. Each worker contrib-
utes 4 cores, 8 GB RAM, and 100 GB of disk 
space to the compute pool. The number of Web 
clients may be arbitrarily large. 

Spark’s master node also serves as the HDFS 
Name Node and is not only part of the Hazelcast 
distributed cache (the cluster ring) but also runs 
a Web server. Multiple Web clients query this 
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Web server. The master node hands out tasks 
to workers in the cluster, which carry out the ac-
tual task executions.  

Each Spark worker is responsible for storing  
data, i.e., acting as an HDFS Data Node, and 
from executing tasks assigned by the master. 
Furthermore, each worker belongs to the same 
Hazelcast cluster ring as the master. 

2.3. MLBase 

MLBase is a scalable machine learning (ML) 
framework that runs on Spark’s core processing 
engine. MLbase consists of three components: 
(1) Machine Learning Library (MLlib), (2) Ma-
chine Learning Interface (MLI), and (3) Machine 
Learning Optimizer (ML Optimizer). 

 ML Optimizer automates the task of ML 
pipeline construction. It optimizes algo-
rithm parameters and data sampling at 
runtime. The optimizer estimates execu-
tion time and algorithm performance using 
statistical models built on data collected 
from previous job executions. 

 MLI is an API for feature extraction and 
algorithm development that provides high-
level ML programming abstractions. 

 MLlib is a distributed machine learning  
library that runs on Spark.  

Developing scalable machine learning algo-
rithms using MLI is very simple. For instance, 
the following code block in Scala programming 
language builds a model for recommending 
movies to users using user to movie pairs and 
user ratings datasets. 

var X = load("user_movie_pairs", 1 to 2)  

var y = load("user_ratings", 1)  

var (fn-model, summary) = doCollabFilter(X, y)  

For a given user Alice, the scores Alice would 
give to movies that she has not seen yet can be 
estimated using the model learnt, i.e., fn-model 
above. 

2.4. Building a Model 

In order to learn a recommendation model, we 
used Amazon’s IMDB movie reviews dataset 
[4,5]. There are 7,911,684 reviews, which were 
extracted from 889,176 reviews for 253,059 
products. All reviews have information about 
product ID, user ID, time, score, summary, and 
text. An example review is given below: 

product/productId: B00006HAXW  

review/userId: A1RSDE90N6RSZF  

review/profileName: Joseph M. Kotow  

review/helpfulness: 9/9  

review/score: 5.0  

review/time: 1042502400  

review/summary: “Pittsburgh – Home of the OLDIES” 

review/text: “I have all of the doo wop DVD's and this 
one is as good or better than the 1st ones. Remem-
ber once these performers are gone, we'll never get 
to see them again. Rhino did an excellent job and if 
you like or love doo wop and Rock n Roll you'll LOVE 
this DVD !!” 

In our case, we only used the following data at-
tributes: user’s identification (user id), product’s 
identification (product id) and the score given by 
a user with a specific user_id to a product with a 
specific product_id. Table 1 shows sample data 
after basic pre-processing has been performed. 

User ID Product ID Score 

26256 208865 3.0 

484047 208865 3.0 

118779 208865 5.0 

Table 1. 
Training Data. Users score movies they watched  

on a scale of 0-5.  

We used the alternative least squares algorithm 
(ALS) available in MLI in order to train a recom-
mender from 500K user id, product id, and score 
entries [6]. The algorithm predicts the unfilled 
cells in the users x products score matrix shown 
in Table 2a using partial score data. An unfilled 
cell for a user_id to product_id pair means that 
user has not yet scored that product. Once the 
score matrix is filled up with score predictions as 
shown in Table 2b, the whole matrix is written 
onto the HDFS. In our implementation, this  
whole operation took 6 minutes. When the Web 
server is booted up, the Hazelcast cluster loads 
the score matrix stored in HDFS right into the 
cluster’s distributed main memory. When a user 
logs in, top recommended products based on 
the scores computed are shown to the user in a 
matter of seconds.  

 



| INFORMATIKA | 

6 | Vol. XVIII. No. 1. |  

 

Figure 3. 
MLBase Architecture.  

 Product ID 

User 
ID 

2  1 

  5 

 3  

(a) Before predictions made. 

 Product ID 

User 
ID 

2 x1 1 

x2 x3 5 

x4 3 x6 

(b) After predictions made using ALS. 

Table 2. 
Using the users’ product scorings data available,  

the ALS algorithm is applied in order to fill  
in the missing entries in the score matrix.  

The time it takes to build a model from scratch is 
typically a couple of minutes, but fortunately, the 
framework allows us to save the learnt model on 
to the HDFS. This enables us to use the model 
later on and also make it available for use by 
other applications. This capability is depicted 
visually in Figure 3. 

3. CONCLUSIONS 

We built an online system that uses recommen-
dations made by a backend batch system  
developed on Apache Spark. Using the ALS  

algorithm available in Spark’s MLI API, it is pos-
sible to craft a distributed and online recommen-
dation system. Filling in a sparse prediction  
matrix that includes 500K entries, took 6 minutes 
in our cluster of 8 workers, each of which had  
4 cores and 8 GB of RAM. Also, we noted that 
MLBase allows us to save the learnt model, 
which can be used by downstream systems and 
applications.  
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