
| INFORMATIKA |

4 | Vol. XV. No. 1. |

WHAT ARE THE SHADERS
AND HOW THEY WORK?

Norbert Zsolt Zentai – Sándor Kaczur

1. ABSTRACT

This project has started as a simple learning
urge, and developed itself to a modern shader
based rendering engine. The rendering engine
called NZEngine (developed by Norbert Zsolt
Zentai) was presented at Dennis Gabor Col-
lege’s Students’ Scientific Association in 2009
[1], and it won the first prize. Due to our teach-
er’s recommendation, three students together
made a presentation showing how exactly ren-
dering works, and they were able to go to Fin-
land for an ERASMUS Life Long Learning Inten-
sive Programme in spring 2012 [2]. Meanwhile,
the rendering engine has been enhanced. This
article is the important part of the bachelor thesis
of Norbert Zsolt Zentai, which has already been
made [3].

2. BEFORE SHADERS

Before shaders existed, video cards had hard
wired algorithms which the programmer could
use along with some built-in parameters that
could be altered. The programmer could not
create new algorithms that could not be built on-
ly on top of existing ones and had no way of
creating something that the video card manufac-
turer has not thought about. The hard wired
concept was not in use because everyone
thought that this would be enough, but since
video cards were not fast enough to be able to
run small programs [4]. As the need grew and
the video cards became faster and faster the
manufacturer started to implement popular ef-
fects like normal mapping, and they added cus-
tom extensions to OpenGL. The OpenGL is an
open standard which the programmer could use
[4]. Manufacturers quickly realized that this
could lead to danger as they implement different
effects using different approaches. The fragmen-
tation would have been inevitable.

3. THE SHADERS

The solution was not to implement those effects
but rather create something even lower level
which can be used to implement already existing
hard-wired algorithms. If this goal can be met,
the programmer should be able to use it to cre-

ate more complex algorithms. The solution is the
shader. The shader is a small program which
the video card can run at different pipeline stag-
es. This program is compiled by the driver of
video card and then is uploaded to the video
card’s shader units [5]. Those shader units are
composed of program storage and executer
units to which the video card’s pipeline could
write and read from.

The first shader was not written using OpenGL’s
Shading Language GLSL or Direct3D’s HLSL.
Video cards supported shader running before
these were created. Shaders were written using
shader assembly which is an assembly styled
language with a different instruction set specifi-
cally for vector math. This was a huge step from
the previous hard wired pipeline, but because of
assembly’s very low level nature, it was very
hard to be written. To solve this, GLSL and
HLSL were born [5].

4. THE TYPES OF SHADERS

The two most common types of shader are the
vertex shader and the fragment shader.

4.1 The vertex shader

Vertex shader runs at every vertex. These ver-
tices are essentially control points from which
the vertex shader calculates the output for the
fragment shader. The main task for the vertex
shader is to calculate the vertex position in
screen space. This shader has two types of in-
put. The first one is called uniform. Uniforms
are constant values during the shader run but
can be modified between these runs. A typical
uniform is the light’s position to the body that we
want to render or the body’s model view matrix
which is basically the body’s position, the projec-
tion matrix which is used to project the 3 dimen-
sional point into the 2 dimensional screen.
These properties are not changing while we
render the body. It would look really weird how
for one vertex the body is facing north, yet for
the next one it’s facing west [9]. The second
type of input is called attribute. Attribute is simi-
lar to the uniform in that this also cannot be al-
tered during the shader run, but these supplies

| INFORMATIKA |

 | Vol. XV. No. 1. | 5

different values [3]. Of course, these values are
not random ones; these are typically the vertex’s
position in 3 dimensional space or the vertex’s
normal vector, color texture coordinate. The out-
put from the vertex shader’s calculation is called
varying.

4.2 The fragment shader

The second type of shader is the fragment
shader. The fragment shader runs after three
vertex calculations is ready. Three vertex calcu-
lations will produce three vertex positions thus
creating a triangle. From this triangle, the video
card allocates shader units for fragment calcula-
tion for each generated pixel. The fragment
shader’s task is to calculate the color of that pix-
el. The fragment shader has access to uniform
values just as the vertex shader, and it also has
access to the vertex shader’s outputs, the vary-
ing. If the vertex shader calculates the varying,
three of them are needed for the fragment
shader stage which one of the varying version
should be used for the fragment shader? The
answer is it should be weighted for the specific
pixel. If the pixel is closer to one of the vertex, it
is a value should be more dominant than the two
others. The varying is a linear-interpolated value
for the fragment shader. For example [7], vertex
“A” produces an output of [1;0;0], a vector with
three components, the vertex “B” produces
[0;1;0] and “C” [0;0;1]. The fragment shader for
the pixel right on top of “A” position receives
[1;0;0]. A fragment shader for the “A”-“B” edge
receives [0,5;0,5;0]. The only output of the frag-
ment shader is the pixel’s colour [6]. Because it
runs for each pixel, the optimization of this is
critical. Everything which can be calculated in
the vertex shader should be moved there. You
can even sacrifice some graphical fidelity in ex-
change for much better performance by calculat-
ing light values in the vertex shader than using
interpolation in the fragment shader.

4.3 The problems and solutions

This control point approach is used because the
video card is a parallel processor capable of
running literally hundreds of threads simultane-
ously. This makes a huge synchronization issue,
where you must know when the shader unit is
finished and accepts new inputs when is the bus
free for shaders to get their inputs. This control
point approach solves this problem, the syn-
chronization is much easier when you know that
every shader unit runs the same program in the
same clock. Also, you can calculate the neces-
sary amount of tick for the shader – so you know
– that if you start the calculation after the calcu-

lated amount of tick, every unit will be ready; you
do not need to query every single one of them,
also you will know what every shader would
need as an input for the specific tick. But this
does create a new problem which is the branch-
ing. What if your shader uses an if statement? If
one branch requires 10 ticks, the other requires
12, then you bring up the same problem again,
that you cannot be sure when all of them are fin-
ished, not to talk about the input feeding. If one
branch requires the value from one of the tex-
ture the other from the other requires a single
number, you cannot prepare the texture lookup,
the main control unit would need to read the
shader’s state on which one does it need, the
other shader would be processing the other
branch, but since it did not get the value, it
would use garbage which it found by the same
accumulator to which the input would have been
wrote, it would create chaos. But we need
branching, there are situations in which branch-
ing is a must, we cannot use a different math for
it. For this, the shader unit calculates every
branch and then, it masks out the one needed
one [3]. This of course slows the shader down,
so it is generally a good idea not to use any
branching. If you know, that for example you do
not need the specific branch for the current ren-
dering, you should compile a new shader which
does not include it. For example if you do not
need light calculation for that frame, do not in-
clude it in the shader, create a new one without
it, and if you need one for the next frame, just
switch out the shader. It is recommended to use
multiple shaders than use branching to turn ef-
fects on or off.

There is also another problem. Where you do
not run every shader, because there is not
enough pixel to calculate. You cannot start the
calculation of a new triangle, because its pixels
could overlap the ones under calculation. The
solution for this problem isn’t to use small trian-
gles, but rather lower the quality of the body’s
geometry if it is far. The video card manufactur-
ers came up with another solution which is
called tile-based deferred rendering [5]. The vid-
eo card’s driver buffers every command, slices
up the screen into tiles, and then pushes the
commands to the video card. The video card
starts the calculation for each tile, and if a frag-
ment shader frees up, the main control unit send
that shader processor to render another tile.
Than, it is impossible to overlap other render-
ings, as the tiles do not overlap. The driver can
also prioritize each tile, so if statistics of one tile
requires more time, the driver allocates more
shader units to that tile. By buffering the com-
mands, if the driver detects, that the position for

| INFORMATIKA |

6 | Vol. XV. No. 1. |

each vertex is easy to calculate, like a standard
3D projection, it pre-calculates those and it
drops calculation for the pixels which would be
overridden by another calculation.

5. A SIMPLE EXAMPLE

Let us look at a basic shader. This shader will fill
the geometry with a single color. The shader ac-
cepts 2 dimensional vectors as the vertex’s posi-
tion and it will not transform them [8].

Figure 1.
A basic 2D vertex shader

We need an attribute which is the position of the
given vertex. Because this shader is a 2 dimen-
sional one, the position is given in a vector with
two components. The next part is to write the
main block. This is the function the video card
invokes when it runs the shader. Here, the
shader has a magic variable called gl_Position,
and its type is a vector with 4 components
(Fig. 1). As this shader is not interested in doing
3D projection it just transforms the position into
a vector with 4 components. The fourth compo-
nent of that vector is 1.0, this is used for projec-
tion, and it is best to set this to 1.0 if we do not
want to use it. See how has been written 0.0 and
1.0 even when in theory I could have written 0
and 1. GLSL is a very strictly typed language
where 1 is strictly an integer and 1.0 is strictly a
floating point number, and vec4 only accepts
floating point numbers.

So, we have the vertex shader; let us take a look
at the fragment shader (Fig. 2).

Figure 2.
A basic colour fill fragment shader

Here we get our color as an input. We could just
use a literal but that would make our shader too
specific and it would not be reusable. The color
is a vector with 4 components, as we can pass
the red, green, blue and the alpha channel

which we can use for blending like a basic
transparency. In the main function, GLSL has
another magic variable which is the
gl_FragColor. This is a vector with 4 compo-
nents and this will be used as the final color of
the given pixel. As we don’t want to modify the
input color in any way, we can just pass that as
the final color.

Now let us look at a bit more complicated
shader. This shader is going to be a 3D shader,
and it will be able to texture the geometry. The
vertex shader will look like as follows (Fig. 3).

Figure 3.
A 3D vertex shader with texture support

For 3 dimensional projection, we need to know
the body’s position, rotation, scaling, skewing.
For this we use matrices, and the matrix that
represents the body’s state relative to the cam-
era’s position is called model view. This is a 4x4
matrix. For the projection we use a matrix that
will distort the image from being orthogonal into
having a perspective effect. This is also a 4x4
matrix. Then we need the vertex’s position is 3
dimension and the texture coordinate which is a
two dimensional vector. Texturing is done by
stretching the image. The stretching is done by
assigning a texture coordinate for the given ver-
tex. This value describes what point of the tex-
ture should be at the given vertex. Because we
use shaders, we must somehow tell the frag-
ment shader what’s exactly its texture coordi-
nate. We need to interpolate the triangles tex-
ture coordinate for the generated triangle. Fortu-
nately, varying provides exactly that. We simply
assign the vertex’s texture coordinate to this
varying and let the video card interpolate this for
the fragment shader. To calculate the vertex’s
position in screen space, thus projecting it, we
use linear algebra. Because we would multiply a
mat4 with a vec3, the shader compiler would
throw an error telling us, that there is no such
operator that can take a mat4 on its left and a
vec3 on its right. The solution is to create a vec4
out by just calling vec4, giving the vec3 position
as the first argument and a 1.0 as its second.

| INFORMATIKA |

 | Vol. XV. No. 1. | 7

Vec4 has an overloaded method that interprets
this as having the first three values from the
vec3 and the fourth from the second argument.

Figure 4.
A fragment shader with texture and tinting support

At first, we have to know, what’s the texture we
need to read from it. This is done via giving the
sampler unit where we did bind our texture. This
is basically the id of the sampler unit. Next, for
some flexibility, we take a color which we can
use for tinting the texture, giving it transparency.
Finally, we take the texCoord from the vertex
shader. In the main function, we query the tex-
ture’s color at the given coordinate by calling
texture2D, giving it the sampler id and the query
coordinate. This function returns a vec4, and we
store it in our texColor variable. Then we just
assign the texColor multiplied by the uniform
color to the gl_FragColor (Fig. 4).

For performance reasons, it is the best way not
to modify any variable which is used for texture
lookups in the fragment shader, as it would kill
the video card’s texture color pre-fetch, and
would also disable the video card’s automatic
mipmap level calculation.

6. SUMMARY

Nowadays, shaders are present almost in every
game. All modern desktop video cards, and
even some mobile video cards support it. Old
pipeline does not have any advantage, because
modern video cards do not include them, but ra-
ther emulate it by dynamically creating new
shaders for the specific render state. If you
would like to learn more about shaders, we rec-
ommend using some OpenGL shader builder
where you can leave out the OpenGL setup
code.

Shaders are not used only for games, they can
be quiet useful in big 3D applications as well.
The principle is pretty much the same, only the

hardware which runs it is different in being a
CPU, not a GPU for greater accuracy and con-
trol. Shader logic can also be used in science for
complex field calculations. Because of it being
also based on multithreading, these calculations
can happen across servers with extremely pow-
erful GPUs creating the power of a supercom-
puter. Some graphics cards are even primarily
designed for such scientific usage.

7. REFERENCES

[1] GDF honlap, TDK szekció:
http://www.gdf.hu/tudomanyos-elet/
tudomanyos-diakkor-tdk/
tdk-konferenciak/2010, 2013.04.05.

[2] ERASMUS Life Long Learning Intensive
Programme, Virrat, Finland:
http://ec.europa.eu/education/erasmus/
ip_en.htm, 2013.04.05.
http://www.tamk.fi/digisomemarit,
2013.04.05.

[3] Zentai, N. Zs. (2012): Multiplatformos 3D
Motor – NZEngine, szakdolgozat, GDF, mér-
nök-informatikus szak,
http://ilias.gdf.hu/ilias.php?ref_id=41919&
obj_id=38143&from_page=38143&cmd=
downloadFile&cmdClass=illmpresentationgui
&cmdNode=8n&baseClass=ilLMPresentation
GUI&file_id=il__file_92173, 2013.04.05.

[4] Budai, A., Vári Kakas, I. (2007): Számítógé-
pes grafika, Inok Kft., Budapest, ISBN 963
9625 32 7

[5] Szirmay-Kalos, L., Antal, Gy., Csonka, F.
(2003): Háromdimenziós grafika, animáció
és játékfejlesztés, ComputerBooks, Buda-
pest, ISBN 9636183031

[6] Zentai, N. Zs., Ágnecz, G., Takács, R.,
Kaczur, S. (2012): Hardveresen gyorsított
3D/2D renderelés. Konferencia cikk, Multi-
média az oktatásban konferencia, 2012

[7] Kopácsi, S., Kaczur, S. (2008): Practical ap-
plication of coordinate and dot transfor-
mations. A GAMF Közleményei, Kecskemét,
XXIII. évf., HU ISSN 1587-4400, p.121-126

[8] Hajós, Gy.: Bevezetés a geometriába, Nem-
zeti Tankönyvkiadó, Budapest, 1971, ISBN
963 18 6771 4

[9] http://developer.apple.com/library/ios/
documentation/3DDrawing/Conceptual/
OpenGLES_ProgrammingGuide/OpenGLES
_ProgrammingGuide.pdf → Avoid Misaligned
Vertex Data, 2013.04.05.

http://www.gdf.hu/tudomanyos-elet/tudomanyos-diakkor-tdk/tdk-konferenciak/2010
http://www.gdf.hu/tudomanyos-elet/tudomanyos-diakkor-tdk/tdk-konferenciak/2010
http://www.gdf.hu/tudomanyos-elet/tudomanyos-diakkor-tdk/tdk-konferenciak/2010
http://ec.europa.eu/education/erasmus/ip_en.htm
http://ec.europa.eu/education/erasmus/ip_en.htm
http://www.tamk.fi/digisomemarit
http://ilias.gdf.hu/ilias.php?ref_id=41919&obj_id=38143&from_page=38143&cmd=downloadFile&cmdClass=illmpresentationgui&cmdNode=8n&baseClass=ilLMPresentationGUI&file_id=il__file_92173
http://ilias.gdf.hu/ilias.php?ref_id=41919&obj_id=38143&from_page=38143&cmd=downloadFile&cmdClass=illmpresentationgui&cmdNode=8n&baseClass=ilLMPresentationGUI&file_id=il__file_92173
http://ilias.gdf.hu/ilias.php?ref_id=41919&obj_id=38143&from_page=38143&cmd=downloadFile&cmdClass=illmpresentationgui&cmdNode=8n&baseClass=ilLMPresentationGUI&file_id=il__file_92173
http://ilias.gdf.hu/ilias.php?ref_id=41919&obj_id=38143&from_page=38143&cmd=downloadFile&cmdClass=illmpresentationgui&cmdNode=8n&baseClass=ilLMPresentationGUI&file_id=il__file_92173
http://ilias.gdf.hu/ilias.php?ref_id=41919&obj_id=38143&from_page=38143&cmd=downloadFile&cmdClass=illmpresentationgui&cmdNode=8n&baseClass=ilLMPresentationGUI&file_id=il__file_92173

