
|   INFORMATIKA   | 

 |   Vol. XII. No. 2.   | 23 

CHANGE OF THE DYNAMICS OF THE SYSTEMS: 
DISSIPATIVE – NON-DISSIPATIVE TRANSITION 

Katalin Gambár  

SUMMARY 

Dynamic phase transitions between non-
dissipative and dissipative processes are dis-
cussed from different viewpoints. Mechanical 
examples are shown to illustrate the transition 
pointing out their realistic behavior. The phase 
transition is shown on a “stretched string on a 
rotating wheel” system. In the thermal energy 
transport an abstract scalar field has been intro-
duced to generate a dynamical temperature and 
a covariant field equation to describe the heat 
propagation with finite speed—less than the 
speed of light—of action. It has been shown how 
this scalar field can be connected to the usual 
temperature (local equilibrium temperature) and 
the Fourier’s heat conduction. Mathematically, 
Klein–Gordon equations with a “negative” mass 
term describe this spinodal instability. The dy-
namical phase transition is in between these two 
kinds of – wave and non-wave – propagation, or 
with an other context, it is better to say, a dy-
namical phase transition between a non-
dissipative and a dissipative thermal process. It 
seems interesting that the thermal case may 
have an important role in the definition of a really 
dynamical temperature. 

MECHANICAL EXAMPLES 

In the model we take a stretched string with 
fixed ends subject an additional force density 
perpendicular to the axis of the string as it is 
shown in Fig. 1. We can construct the Lagran-
gian L(-), Eq. (1 with -), then the equation of mo-
tion as the Euler–Lagrange equation Eq. (2 with 
+) can be obtained 
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where Ψ  is the normal displacement, ρ  is the 

mass density, A  is the cross section of the 
string, F  is the stretching force and D  is the 
spring force density. This is the well-known clas-
sical form of the Klein–Gordon equation. If we 
assume the existence of repulsive-like springs 
changing the sign of the potential, we get Fig. 2. 
Applying this repulsive potential we obtain the 
Lagrangian L(+), Eq. (1 with +) and the equation 
of motion Eq. (2 with -). This equation can be 
also handled as a Klein–Gordon equation, how-
ever its solution is quite different from the previ-
ous case [1]. It has a so-called “tachyonic”-like 
solution [2] that brings the possibility of a dy-
namical phase transition [3] into the theory. If we 
put the stretched string on a rotating disk when 
the origin of the disk is on the line (and not at the 
end point, practically in the middle) shown in Fig. 
3, 
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the appearing centrifugal force in Eq. (3) be-
haves, as a repulsive interaction from this view-
point (ω  is the angular velocity). This potential 
has the same structure like the spring force in 
Eq. (2). We calculate the dispersion relation by 
Eq. (4), the phase velocity by Eq. (5), the group 
velocity by Eq. (6). 
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Examining these equations we can see from Eq. 
(5) that there is a critical value of angular veloc-
ity ω, which is the upper limit of the wave propa-
gation. The physical meaning is clear, above this 
value the centrifugal force elongates the string to 
infinity, i.e., the string cannot have vibrating 
modes. Summarizing, we can say that wave 
modes exist if Eq. (7a) is valid and there are no 
wave modes if Eq. (7b) relation is realized. The 
dynamical phase transition happens at a certain 
value of k as it can be seen in Fig. 4 
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DISSIPATIVE – NON-DISSIPATIVE  
TRANSITION  

We have introduced an abstract scalar field ϕ  

to generate a dynamical temperature T and a 
covariant field in Eq. (8) to describe the heat 
propagation with finite speed—less than the 
speed of light—of action  
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Temperature τ denotes the usual local equilib-
rium temperature given by 
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The relevant equations parallel both the Lagran-

gian wL  for the wave solution and Lagrangian 

cL  for the classical heat conduction [4-8] 
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Figure 1. 
Stretched string with attractive potential 

 

Figure 2. 
Stretched string with repulsive potential 

 

Figure 3. 
Stretched string on a rotating disc 
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Eqs. (12) and (13) show the difference between 
the propagations. The Klein–Gordon type Eq. 
(12) with a repulsive potential can serve a 
tachyonic solution leading to the spinodal insta-
bility [9]. The parabolic Eq. (13) pertains to the 
Fourier’s heat equation. We calculate the dis-
persion relations for both cases from which we 
obtain the phase and group velocities. If we tend 
to the infinity with speed of light then the group 
velocity of Eq. (12) tends to the group velocity of 
Eq. (13) 
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The dispersion relations for these equations are 
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The group velocity gv for the Klein–Gordon 

equation given by Eq. (14a) is  
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If the speed of light tends to infinite this relation 
turns into Dki2−  which is exactly the group 
velocity of the classical equation. Similarly, we 

can calculate the phase velocity phw  for the 

wave equation 
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Now, let 
D

c
k

20 =  be, and it can be seen that if 

0kk >  then 
dk

dω
 is a real and wave solution. 

However, if 0kk <  then 
dk

dω
 is imaginary and 

non-wave. If we plot phw  and phwIm  as a func-

tion of Dk  we can realize that close to 0Dk  the 

critical slow down appears in Fig 4. 

 

Figure 4. 
Phase transition diagram 
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